Choosing the optimal trajectory inference method

dynguidelines

answer_questions()

Provide answers to various questions

dynguidelines

Dynguidelines packages

get_answers_code()

Produces the code necessary to reproduce a particular set of guidelines

get_questions() get_question()

Load in the questions

get_renderers()

Get all renderers

guidelines() guidelines_shiny()

Select the top methods, optionally based on a given dataset

is_guidelines()

Check whether object is guidelines

label_capitalise() label_split()

Labelling

methods

Metadata on the different TI methods

shiny_server()

The shiny server

shiny_ui()

Shiny user interface

Running trajectory inference methods

dynmethods

dynmethods

Wrappers for trajectory inference methods

methods

Metadata on the different TI methods

ti_angle()

Inferring a trajectory inference using Angle

ti_calista()

Inferring a trajectory inference using CALISTA

ti_cellrouter()

Inferring a trajectory inference using CellRouter

ti_celltrails()

Inferring a trajectory inference using CellTrails

ti_celltree_gibbs()

Inferring a trajectory inference using cellTree with gibbs

ti_celltree_maptpx()

Inferring a trajectory inference using cellTree with maptpx

ti_celltree_vem()

Inferring a trajectory inference using cellTree with vem

ti_comp1()

Inferring trajectories with Component 1

ti_dpt()

Inferring a trajectory inference using DPT

ti_elpicycle()

Inferring a trajectory inference using ElPiGraph cycle

ti_elpigraph()

Inferring a trajectory inference using ElPiGraph

ti_elpilinear()

Inferring a trajectory inference using ElPiGraph linear

ti_embeddr()

Inferring a trajectory inference using Embeddr

ti_error()

Inferring trajectories with Control: error

ti_fateid()

Inferring a trajectory inference using FateID

ti_forks()

Inferring a trajectory inference using FORKS

ti_gpfates()

Inferring a trajectory inference using GPfates

ti_grandprix()

Inferring a trajectory inference using GrandPrix

ti_identity()

Inferring trajectories with Control: identity

ti_matcher()

Inferring a trajectory inference using MATCHER

ti_merlot()

Inferring a trajectory inference using MERLoT

ti_mfa()

Inferring a trajectory inference using mfa

ti_monocle_ddrtree()

Inferring a trajectory inference using Monocle DDRTree

ti_monocle_ica()

Inferring a trajectory inference using Monocle ICA

ti_mpath()

Inferring a trajectory inference using Mpath

ti_ouija()

Inferring a trajectory inference using ouija

ti_ouijaflow()

Inferring a trajectory inference using ouijaflow

ti_paga()

Inferring a trajectory inference using PAGA

ti_pcreode()

Inferring a trajectory inference using pCreode

ti_periodpc()

Inferring a trajectory inference using Periodic PrinCurve

ti_phenopath()

Inferring a trajectory inference using PhenoPath

ti_projected_dpt()

Inferring a trajectory inference using Projected DPT

ti_projected_gng()

Inferring a trajectory inference using Projected GNG

ti_projected_monocle()

Inferring a trajectory inference using Projected Monocle

ti_projected_paga()

Inferring a trajectory inference using Projected PAGA

ti_projected_slingshot()

Inferring a trajectory inference using Projected Slingshot

ti_projected_tscan()

Inferring a trajectory inference using Projected TSCAN

ti_pseudogp()

Inferring a trajectory inference using pseudogp

ti_raceid_stemid()

Inferring a trajectory inference using RaceID / StemID

ti_random()

Inferring trajectories with Control: random

ti_recat()

Inferring a trajectory inference using reCAT

ti_scimitar()

Inferring a trajectory inference using SCIMITAR

ti_scorpius()

Inferring a trajectory inference using SCORPIUS

ti_scoup()

Inferring a trajectory inference using SCOUP

ti_scuba()

Inferring a trajectory inference using SCUBA

ti_shuffle()

Inferring trajectories with Control: shuffle

ti_sincell()

Inferring a trajectory inference using Sincell

ti_slice()

Inferring a trajectory inference using SLICE

ti_slicer()

Inferring a trajectory inference using SLICER

ti_slingshot()

Inferring a trajectory inference using Slingshot

ti_stemnet()

Inferring a trajectory inference using STEMNET

ti_topslam()

Inferring a trajectory inference using topslam

ti_tscan()

Inferring a trajectory inference using TSCAN

ti_urd()

Inferring a trajectory inference using URD

ti_wanderlust()

Inferring a trajectory inference using Wanderlust

ti_waterfall()

Inferring a trajectory inference using Waterfall

ti_wishbone()

Inferring a trajectory inference using Wishbone

Toolbox to transform trajectory models

dynwrap

add_branch_trajectory()

Define a trajectory model given its branch network and the pseudotime of the cells on one of the branches

add_cell_graph()

Constructs a trajectory using a graph between cells, by mapping cells onto a set of backbone cells.

add_cell_waypoints()

Add cell waypoints to a wrapped object with trajectory

add_cluster_graph()

Constructs a trajectory using a cell grouping and a network between groups. Will use an existing grouping if it is present in the model.

add_cyclic_trajectory()

Constructs a circular trajectory using the pseudotime values of each cell.

add_dimred() is_wrapper_with_dimred() get_dimred()

Add or create a dimensionality reduction

add_dimred_projection()

Constructs a trajectory by projecting cells within a dimensionality reduction onto a backbone formed by a milestone network. Optionally, a cell grouping can be given which will restrict the edges on which a cell can be projected.

add_end_state_probabilities()

Multifurcating trajectory with end state probabilities

add_expression() is_wrapper_with_expression() get_expression()

Add count and normalised expression values to a model

add_grouping() is_wrapper_with_grouping() get_grouping()

Add a cell grouping to a data wrapper

add_linear_trajectory()

Constructs a linear trajectory using the pseudotime values of each cell.

add_prior_information()

Add prior information to a data wrapper

calculate_pseudotime() add_pseudotime()

Add or calculate pseudotime as distance from the root

add_root()

Root the trajectory

add_root_using_expression()

Add root cell to wrapper using expression of features

add_timing_checkpoint()

Helper function for storing timings information.

add_timings()

Add count and normalised expression values to a model

add_trajectory()

Define a trajectory model given its milestone network and milestone percentages or progressions

add_waypoints()

Add or create waypoints to a trajectory

allowed_inputs

All allowed inputs

allowed_outputs

All allowed outputs

calculate_average_by_group()

Calculate mean values per cell group

calculate_average_by_milestone_percentages()

Calculate mean values by milestone percentages

classify_milestone_network()

Classify a milestone network

compute_tented_geodesic_distances() compute_tented_geodesic_distances_()

Calculate geodesic distances between cells in a trajectory, taking into account tents

convert_milestone_percentages_to_progressions()

Convert milestone percentages to progressions

convert_progressions_to_milestone_percentages()

Convert progressions to milestone percentages

create_container_ti_method()

Creating a TI method from a docker repository

create_docker_ti_method() extract_definition_from_docker_image() pull_docker_ti_method()

Create a TI method from a docker image

create_singularity_ti_method() extract_definition_from_singularity_image() pull_singularity_ti_method()

Create a TI method from a singularity image

create_ti_method()

Create a TI method wrapper

determine_cell_trajectory_positions()

Determine the positions of all cells in the trajectory

dimred_trajectory() check_or_perform_dimred()

Perform dimensionality reduction on a trajectory and the respective samples in order to plot it

dynwrap

This R package contains the code for a common model of single-cell trajectories.

execute_method_internal()

Internal method for executing a method

execute_method_on_dataset()

Run a method on a dataset with a set of parameters

gather_cells_at_milestones()

"Gather" cells to their closest milestones

generate_prior_information()

Extract the prior information from the milestone network

get_cell_grouping()

Group cells to their highest milestone

get_default_parameters()

Get the default parameters of a method

get_ti_methods()

Return all TI ti_methods

group_onto_nearest_milestones()

Grouping the cells onto the closest milestones

group_onto_trajectory_edges()

Grouping the cells onto their edges

infer_trajectories() infer_trajectory()

Infer trajectories

is_data_wrapper()

Test whether an object is a data_wrapper

is_prediction()

Tests whether an object is a trajectory created by a TI method.

is_ti_method()

Tests whether an object is a TI method description

is_wrapper_with_prior_information()

Test whether an object is a dataset and contains prior information

is_wrapper_with_timings()

Test whether an object is a model and has timings information

is_wrapper_with_trajectory()

Test whether an object is a model and has a trajectory

is_wrapper_with_waypoint_cells()

Test whether an object is a data_wrapper and cell waypoints

is_wrapper_with_waypoints()

Test whether an trajectory is a data_wrapper and waypoints

label_milestones() label_milestones_markers() is_wrapper_with_milestone_labelling() get_milestone_labelling()

Label milestones either manually (label_milestones) or using marker genes (label_milestones_markers)

parse_parameter_definition()

Parse a parameter definition

prior_usages

Metadata on prior usages

priors

Metadata on priors

select_waypoint_cells()

Select the waypoint cells

select_waypoints()

Select the waypoints

simplify_igraph_network()

Simplify an igraph network such that consecutive linear edges are removed

simplify_trajectory()

Simplify a trajectory

simplify_trajectory_type()

Convert directed trajectory type to simplified versions

test_docker_installation()

Tests whether docker is correctly installed and available

ti_comp1()

Inferring trajectories with Component 1

ti_error()

Inferring trajectories with Control: error

ti_identity()

Inferring trajectories with Control: identity

ti_random()

Inferring trajectories with Control: random

ti_shuffle()

Inferring trajectories with Control: shuffle

trajectory_type_dag

A DAG of trajectory types

trajectory_types

Metadata on the trajectory types

trajectory_types_simplified

Metadata on simplified trajectory types

wrap_data()

A data wrapper for datasets and trajectories

wrap_expression()

Create a wrapper object with expression and counts

wrap_output() wrap_rds() wrap_text() wrap_feather()

Wrap the output of a TI method

wrap_prediction_model()

An abstract data wrapper for TI predictions

Visualising trajectories

dynplot

add_cell_coloring()

Add coloring

add_density_coloring()

Color cells using a background density

add_milestone_coloring()

Add milestone coloring

dynplot

Plot all the trajectories

empty_plot()

Create an empty plot for spacing

get_milestone_palette_names()

Get the names of valid color palettes

linearise_cells()

Linearise a trajectory

milestone_palette()

Wrapper for various palettes

plot_dendro()

Plot a tree trajectory as a dendrogram

plot_dimred()

Plot the trajectory on dimensionality reduction

plot_edge_flips()

Plotting edge flips

plot_features()

Plotting a set of features in a line plot

plot_graph()

Plot a dimensionality reduced trajectory as a 2D graph

plot_heatmap()

Plot the traj as a heatmap

plot_linearised_comparison()

Plot strip onedim

plot_onedim()

Plot onedim

plot_strip()

Plot strip

plot_topology()

Plotting the topology of a trajectory

process_dynplot()

Default theme for TI plots

project_waypoints()

Project the waypoints

theme_clean()

We like our plots clean

theme_graph()

We like our plots clean

Extracting relevant features from a trajectory

libraries/dynfeature

calculate_milestone_feature_importance() calculate_overall_feature_importance() calculate_waypoint_feature_importance() calculate_cell_feature_importance() calculate_branch_feature_importance() calculate_branching_point_feature_importance()

Calculating feature importances across trajectories

dynfeature

Dynfeature feature importance