Will generate a trajectory using FORKS.
This method was wrapped inside a container. The original code of this method is available here.
ti_forks(norm_function = "median", norm_quantile = 75L, cum_sum_exp_var = 0.9, min_cluster = 4L, max_cluster = 10L, mapping_type = "Isomap", initialization = "kmeans", iterMax = 1000L, eta = 0.01, C = 1L, run_environment = NULL)
norm_function | discrete; No description provided by the author. (default:
|
---|---|
norm_quantile | numeric; No description provided by the author. (default:
|
cum_sum_exp_var | numeric; No description provided by the author.
(default: |
min_cluster | integer; No description provided by the author. (default:
|
max_cluster | integer; No description provided by the author. (default:
|
mapping_type | discrete; No description provided by the author. (default:
|
initialization | discrete; No description provided by the author.
(default: |
iterMax | integer; No description provided by the author. (default:
|
eta | numeric; No description provided by the author. (default: |
C | numeric; No description provided by the author. (default: |
run_environment | In which environment to run the method, can be |
A TI method wrapper to be used together with
infer_trajectory
Sharma, M., Li, H., Sengupta, D., Prabhakar, S., Jayadeva, J., 2017. FORKS: Finding Orderings Robustly using K-means and Steiner trees.