Will generate a trajectory using MERLoT.
This method was wrapped inside a container. The original code of this method is available here.
ti_merlot(sigma = "local", distance = "euclidean", ndim = 20L, density_norm = TRUE, n_local_lower = 5L, n_local_upper = 7L, w_width = 0.01, n_components_to_use = 3, N_yk = 100, lambda_0 = 1e-10, mu_0 = 0.0025, increaseFactor_mu = 20, increaseFactor_lambda = 20, FixEndpoints = FALSE, run_environment = NULL)
sigma | discrete; Diffusion scale parameter of the Gaussian kernel. A larger sigma might be necessary if the eigenvalues can not be found because of a singularity in the matrix. Must be one of:
(default:
|
---|---|
distance | discrete; A
(default: |
ndim | integer; Number of eigenvectors/dimensions to return (default:
|
density_norm | logical; Logical. If TRUE, use density normalisation |
n_local_lower | integer; If sigma == 'local', the
|
n_local_upper | integer; See |
w_width | numeric; Window width to use for deciding the branch cutoff
(default: |
n_components_to_use | integer; Which components to use in downstream
analysis (default: |
N_yk | integer; Number of nodes for the elastic principal tree (default:
|
lambda_0 | numeric; Principal elastic tree energy function parameter.
(default: |
mu_0 | numeric; Principal elastic tree energy function parameter.
(default: |
increaseFactor_mu | numeric; Factor by which the mu will be increased for
the embedding (default: |
increaseFactor_lambda | numeric; Factor by which the mu will be increased
for the embedding (default: |
FixEndpoints | logical; Documentation not provided by authors |
run_environment | In which environment to run the method, can be |
A TI method wrapper to be used together with
infer_trajectory
Parra, R.G., Papadopoulos, N., Ahumada-Arranz, L., El Kholtei, J., Treutlein, B., Soeding, J., 2018. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.