Will generate a trajectory using DPT.
This method was wrapped inside a container. The original code of this method is available here.
ti_dpt(sigma = "local", distance = "euclidean", ndim = 20L, density_norm = TRUE, n_local_lower = 5L, n_local_upper = 7L, w_width = 0.1, run_environment = NULL)
sigma | discrete; Diffusion scale parameter of the Gaussian kernel. A larger sigma might be necessary if the eigenvalues can not be found because of a singularity in the matrix. Must be one of:
(default:
|
---|---|
distance | discrete; A
(default: |
ndim | integer; Number of eigenvectors/dimensions to return (default:
|
density_norm | logical; Logical. If TRUE, use density normalisation |
n_local_lower | integer; If sigma == 'local', the
|
n_local_upper | integer; See |
w_width | numeric; Window width to use for deciding the branch cutoff
(default: |
run_environment | In which environment to run the method, can be |
A TI method wrapper to be used together with
infer_trajectory
Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J., 2016. Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods 13, 845–848.