dynwrap

dynwrap 1.0.1 (unreleased)

  • MINOR CHANGE: Make create_ti_method_definition() actually work

  • DOCUMENTATION: Added examples for each trajectory wrapper

  • DOCUMENTATION: Added vignette discussing wrapper types

  • DOCUMENTATION: Added vignette discussing create_ti_method_definition()

dynwrap 1.0.0 (28-03-2019)

  • MAJOR CHANGE: Add support for Singularity 3.0, drop support for previous releases of Singularity and singularity-hub.

  • MAJOR CHANGE: dynwrap now always works with sparse count and expression matrices

  • FEATURE: Add create_ti_method_definition() to create a definition from a local script.

  • DOCUMENTATION: Major update of all documentation for dynbenchmark publication

  • MINOR CHANGE: Rename compute_tented_geodesic_distances() to calculate_geodesic_distances()

  • MINOR CHANGE: Harmonisation of function arguments to either dataset or trajectory

Creating a trajectory

Methods to create a trajectory

add_branch_trajectory

Create a trajectory given its branch network and the pseudotime of the cells on one of the branches

add_cell_graph

Constructs a trajectory using a graph between cells, by mapping cells onto a set of backbone cells.

add_cluster_graph

Constructs a trajectory using a cell grouping and a network between groups. Will use an existing grouping if it is present in the dataset.

add_cyclic_trajectory

Constructs a circular trajectory using the pseudotime values of each cell.

add_dimred_projection

Constructs a trajectory by projecting cells within a dimensionality reduction onto a backbone formed by a milestone network. Optionally, a cell grouping can be given which will restrict the edges on which a cell can be projected.

add_end_state_probabilities

Multifurcating trajectory with end state probabilities

add_linear_trajectory

Constructs a linear trajectory using the pseudotime values of each cell.

add_trajectory is_wrapper_with_trajectory

Define a trajectory dataset given its milestone network and milestone percentages or progressions

wrap_data is_data_wrapper

A data wrapper for datasets and trajectories

Adapting a trajectory model

Methods to adapt a trajectory

add_cell_waypoints is_wrapper_with_waypoint_cells

Add cell waypoints to a wrapped trajectory

add_dimred is_wrapper_with_dimred get_dimred

Add or create a dimensionality reduction

add_expression is_wrapper_with_expression get_expression

Add count and normalised expression values to a dataset

add_grouping is_wrapper_with_grouping get_grouping

Add a cell grouping to a dataset

add_root add_root_using_expression is_rooted

Root the trajectory

add_tde_overall

Add information on overall differentially expressed features

add_timings is_wrapper_with_timings add_timing_checkpoint

Add timings checkpoints

add_waypoints is_wrapper_with_waypoints select_waypoints

Add or create waypoints to a trajectory

gather_cells_at_milestones

"Gather" cells to their closest milestones

label_milestones label_milestones_markers is_wrapper_with_milestone_labelling get_milestone_labelling

Label milestones either manually (label_milestones) or using marker genes (label_milestones_markers)

simplify_trajectory

Simplify a trajectory by removing transient milestones

Calculations from a trajectory

Deriving features from a trajectory model

calculate_pseudotime add_pseudotime

Add or calculate pseudotime as distance from the root

calculate_average_by_group

Calculate mean values per cell group

calculate_average_by_milestone_percentages

Calculate mean values by milestone percentages

calculate_geodesic_distances compute_tented_geodesic_distances

Calculate geodesic distances between cells in a trajectory

calculate_trajectory_dimred

Layout the trajectory and its cells in 2 dimensions

group_from_trajectory group_onto_trajectory_edges group_onto_nearest_milestones

Create a grouping from a trajectory

Creating a TI method

Methods to create a TI method wrapper

allowed_inputs

All allowed inputs

convert_definition

Convert a definition loaded in from a yaml

create_ti_method_container

Create a TI method from a docker / singularity container

create_ti_method_definition

Create a TI method from a local method definition file

create_ti_method_r

Create a TI method wrapper

def_author

Meta information on an author

def_container

Meta information on the container in which the wrapper resides

def_manuscript

Meta information on the manuscript

def_method

Define meta information on the TI method.

def_parameters

Meta information on the parameters of the TI method

def_wrapper

Meta information on the wrapper

definition is_ti_method

Create a definition

.method_process_definition

Method process definition

get_default_parameters

Get the default parameters of a method

prior_usages

Metadata on prior usages

priors

Metadata on priors

trajectory_type_dag

A DAG of trajectory types

trajectory_types

Metadata on the trajectory types

wrapper_types

Metadata on wrapper types

Running a TI method

Methods to run one or more TI methods

add_prior_information is_wrapper_with_prior_information generate_prior_information

Add prior information to a data wrapper

get_ti_methods

Return all TI ti_methods

infer_trajectories infer_trajectory

Infer trajectories

wrap_expression

Create a wrapper object with expression and counts

Other

allowed_outputs

All allowed outputs

classify_milestone_network

Classify a milestone network

convert_milestone_percentages_to_progressions

Convert milestone percentages to progressions

convert_progressions_to_milestone_percentages

Convert progressions to milestone percentages

determine_cell_trajectory_positions

Determine the positions of all cells in the trajectory

dynwrap dynwrap-package

This R package contains the code for a common model of single-cell trajectories.

example_dataset

Example dataset

generate_parameter_documentation

Generate the parameter documentation of a method, use with @eval

get_divergence_triangles

Helper function for processing divergence regions

random_seed

Generate a random seed

select_waypoint_cells

Select the waypoint cells

simplify_igraph_network

Simplify an igraph network such that consecutive linear edges are removed

wrap_output_list

Transform a list of data objects to a dynwrap trajectory