ti_pseudogp.Rd
Will generate a trajectory using pseudogp.
This method was wrapped inside a container. The original code of this method is available here.
ti_pseudogp(smoothing_alpha = 10, smoothing_beta = 3, pseudotime_mean = 0.5, pseudotime_var = 1, chains = 3L, iter = 100L, dimreds = c("pca", "mds"), initialise_from = "random")
smoothing_alpha | The hyperparameter for the Gamma distribution that controls arc-length. Domain: U(1, 20). Default: 10. Format: numeric. |
---|---|
smoothing_beta | The hyperparameter for the Gamma distribution that controls arc-length. Domain: U(1, 20). Default: 3. Format: numeric. |
pseudotime_mean | The mean of the constrained normal prior on the pseudotimes. Domain: U(0, 1). Default: 0.5. Format: numeric. |
pseudotime_var | The variance of the constrained normal prior on the pseudotimes. Domain: U(0.01, 1). Default: 1. Format: numeric. |
chains | The number of chains for the MCMC trace. Domain: U(1, 20). Default: 3. Format: integer. |
iter | The number of iterations for the MCMC trace. Domain: e^U(4.61, 6.91). Default: 100. Format: integer. |
dimreds | A character vector specifying which dimensionality reduction
methods to use. See |
initialise_from | How to initialise the MCMC chain. One of "random" (stan
decides),"principal_curve", or "pca" (the first component of PCA rescaled is
taken to be the pseudotimes).Note: if multiple representations are provided,
|
A TI method wrapper to be used together with
infer_trajectory
Campbell, K.R., Yau, C., 2016. Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference. PLOS Computational Biology 12, e1005212.